Oscillations

Differential equation of simple harmonic motion or SHM,

$$\boxed{\frac{d^2 x}{dt^2}+\omega^2 x = 0}$$


x : Displacement(m)

\(\omega\) : Angular frequency

Equation of motion of SHM

$$ \boxed{x(t)=A\;sin\;(\omega t + \phi) }$$


A : Amplitude

\(\phi\) : Initial phase

Differential equation of Damped harmonic oscillator

$$\boxed{\frac{d^2 x}{dt^2}+2 \gamma \frac{dx}{dt}+\omega_o^2 x = 0}$$


\(\gamma\) : Damping coefficient

\(\omega_o\) : Natural frequency

x : Displacement

t : time

Damping coefficient

$$\boxed{\gamma = \frac{b}{2m}}$$


b : Damping constant

m : mass

Angular frequency of damped oscillator

$$\boxed{\omega=\sqrt{\omega_o^2 - \gamma^2}}$$


\( \gamma \) : Damping coefficient

\( \omega_o \) : natural angular frequency of oscillator

Quality factor

$$\boxed{Q=\frac{\omega}{2 \gamma }}$$


\( \gamma \) : Damping coefficient

\( \omega \) : Angular frequency of damped oscillator

Relaxation time

$$\boxed{\tau=\frac{1}{2 \gamma }}$$


\( \gamma \) : Damping coefficient

Energy dissipation in damped oscillator

$$\boxed{E(t)=E_o\;e^{-2 \gamma t}}$$


\( \gamma \) : Damping coefficient

\( E(t) \) : Energy at time t

\( E_o \) : Initial energy or undamped value

Amplitude variation in damped oscillator

$$\boxed{A(t)=A_o\;e^{- \gamma t}}$$


\( \gamma \) : Damping coefficient

\( A(t) \) : Amplitude at time t

\( A_o \) : Initial Amplitude of oscillator

Differential equation of forced harmonic oscillator

$$\boxed{\frac{d^2 x}{dt^2}+2 \gamma \frac{dx}{dt}+\omega_o^2 x = f_o\;sin\;(\omega_f \;t)}$$


\(\gamma\) : Damping coefficient

\(f_o\) : Amplitude of external periodic force

\(\omega_f \) : Angular frequency of external periodic force or external driving frequency

Amplitude of forced harmonic oscillator

$$\boxed{A= \frac{f_o}{\sqrt{(\omega_o^2 - \omega_f^2)^2 + 4 \gamma^2 \omega_f^2}}}$$


\(\gamma\) : Damping coefficient

\(f_o\) : Amplitude of external periodic force

\(\omega_f \) : Angular frequency of external periodic force or external driving frequency

Differential equation of LCR circuit or electrical oscillator

$$\boxed{\frac{d^2 q}{dt^2}+\frac{R}{L}\frac{dq}{dt}+\frac{q}{LC}=\frac{V_o}{L}\;sin\;(\omega t)\;}$$


q : Charge

R : Resistance

L : Inductance

C : Capacitance

\(V_o\) : Voltage Amplitude

\( \omega \) : Angular frequency of power source

Waves

1-D Wave equation

$$\boxed{\frac{\partial^2 u}{\partial x^2} =\frac{1}{v^2} \; \frac{\partial^u}{\partial t^2}}$$


\(u\) : Displacement of particles in medium

\(v\) : velocity of wave

3-D Wave equation

$$\boxed{\nabla^2 u =\frac{1}{v^2} \; \frac{\partial^u}{\partial t^2}}$$


\(\nabla^2\) : Laplacian operator

\(v\) : velocity of wave

Solution of 1-D Wave equation

$$\boxed{u(x,t)=A\;sin\;(kx \pm \omega t + \phi)}$$


\(u\) : Displacement of particles in medium

\(A\) : Amplitude of wave

\(\omega\) : Angular frequency of wave

\( k \) : Wave number or wave vector

\(x \) : Displacement of wave

\(\phi \) : Initial phase

Frequency & Angular frequency

$$\boxed{f=\frac{\omega}{2 \pi}}$$


\(f\) : frequency

\(\omega\) : Angular frequency

Wavelength and Wavenumber

$$\boxed{\lambda=\frac{2 \pi}{k}}$$


\(k\) : Wave number

\(\lambda\) : Wavelength

Velocity of Wave

$$\boxed{v=f\;\lambda\;\;or\;\;v=\frac{\omega}{k}}$$


\(k\) : Wave number

\(\lambda\) : Wavelength

\(f\) : frequency

\(\omega\) : Angular frequency

Velocity of waves in stretched string

$$\boxed{v =\sqrt{ \frac{T}{\mu}}}$$


\(T\) : Tension on string

\(\mu\) : Linear mass density of string

Frequency of waves in stretched string

$$\boxed{f =\frac{n}{2l}\sqrt{ \frac{T}{\mu}}}$$ when n = 1 , fundamental frequency:

$$\boxed{f_{fund} =\frac{1}{2l}\sqrt{ \frac{T}{\mu}}}$$


\(T\) : Tension on string

\(\mu\) : Linear mass density of string

\(l\) : length of string

\(n\) : number of loops formed in string

Interference

Condition for maximum ( Constructive interference )

$$\boxed{path\;difference =n\;\lambda}$$


\(n\) = 1,2,3....

\(\lambda\) : Wavelength

Condition for minimum ( Destructive interference )

$$\boxed{path\;difference =(2n-1)\frac{\lambda}{2}}$$


\(n\) = 1,2,3....

\(\lambda\) : Wavelength

Cosine law ( Reflection on thin film )

$$\boxed{2 \mu t \;cos\;r =n\;\lambda}$$


\(\mu\) = Refractive index of thin film

\(\lambda\) : Wavelength

\(t\) = Thickness of thin film

\(r\) : Angle of refraction

Bandwidth ( of Air wedge interference pattern )

$$\boxed{\beta =\frac{\lambda}{2 \theta }}$$ if a medium of refractive index \( \mu \) is filled between glass plates, $$\boxed{\beta =\frac{\lambda}{2 \mu \theta}} $$


\(\theta\) = Angle of wedge

\(\lambda\) : Wavelength

Diameter of thin wire ( Air wedge )

$$\boxed{d =\frac{l\;\lambda}{2 \beta }}$$


\(\beta\) = Bandwidth of interference pattern

\(l\) : distance between point of contact and wire

\(\lambda\) = Wavelength of incident light

Radius of nth dark ring ( Newton's Rings )

$$\boxed{r_n =\sqrt{Rn\lambda}}$$


\(R\) = Radius of curvature of lens

\(n\) : order of the ring

\(\lambda\) = Wavelength of incident light

Wavelength of light ( Newton's Rings )

$$\boxed{\lambda =\frac{D_{n+k}^2 - D_n^2}{4kR}}$$ if a liquid of refractive index \( \mu \) is inserted between lens and glass plate, $$\boxed{\lambda =\frac{D_{n+k}^2 - D_n^2}{4 \mu kR}}$$ or refractive index, $$\boxed{\mu =\frac{D_{n+k}^2 - D_n^2}{4kR \lambda}}$$


\(D_{n+k}\) = Diameter of (n+k)th dark ring

\(D_{n}\) = Diameter of nth dark ring

\(R\) = Radius of curvature of lens

\(k\) = Difference in order of ring

Refractive index of liquid inserted between lens and plate ( Newton's Rings )

$$\boxed{\mu =\frac{D_{n+k}^2 - D_n^2}{d_{n+k}^2 - d_n^2}}$$


\(D_{n+k}\) = Diameter of (n+k)th dark ring when air is between lens and glass plate

\(D_{n}\) = Diameter of nth dark ring when air is between lens and glass plate

\(d_{n+k}\) = Diameter of (n+k)th dark ring when liquid of refractive index \( \mu \) is between lens and glass plate

\(d_{n}\) = Diameter of nth dark ring when liquid of refractive index \( \mu \) is between lens and glass plate

Minimum thickness ( Anti-Reflection coatings )

$$\boxed{t =\frac{\lambda}{4 \mu}}$$


\(\mu\) = Refractive index of thin film

\(\lambda\) = Wavelength of incident light

Diffraction

Grating equation

$$\boxed{sin\;\theta = n N \lambda}$$


\(\theta\) = Angle of diffraction

\(n\) = Order of spectrum

\(\lambda\) = Wavelength of incident light

\(N\) = Number of lines per unit length in grating

Resolving power of grating

$$\boxed{\frac{\lambda}{d \lambda}= n N'}$$


\(\lambda\) = Wavelength of incident light

\(N'\) = Total number of lines in grating

\(n\) = Order of spectrum

Dispersive power of grating

$$\boxed{\frac{d\theta}{d \lambda}= \frac{n N}{cos\;\theta}}$$


\(\lambda\) = Wavelength of incident light

\(N\) = Number of lines per unit length of grating

\(n\) = Order of spectrum

\(\theta\) = Angle of diffraction

Quantum Mechanics

De-broglie wavelength

$$\boxed{\lambda = \frac{h}{p} = \frac{h}{mv}}$$ In terms of energy E of a particle, $$ \boxed{\lambda = \frac{h}{\sqrt{2mE}}} $$


\(h\) = Plank's constant = \( 6.63 \times 10^{23} J.s \)

\(p\) = Momentum of particle

\(m\) = Mass of particle

\(v\) = Velocity of particle

Position - Momentum Uncertainty principle.

$$\boxed{\Delta x \;\Delta P = \hbar}$$ In terms of velocity v of a particle, $$ \boxed{\Delta x \;m\;\Delta v = \hbar} $$


\(\Delta x\) = Uncertainty in position

\(\Delta p\) = Uncertainty in momentum

\(\hbar\) = Reduced Plank's constant = \( \frac{h}{2 \pi} \)

\(\Delta v\) = Uncertainty in velocity

Position - Momentum Uncertainty principle.

$$\boxed{\Delta E \;\Delta t = \hbar}$$


\(\Delta E\) = Uncertainty in energy measurement

\(\Delta t\) = Life time of energy state E

\(\hbar\) = Reduced Plank's constant = \( \frac{h}{2 \pi} \)

1D Schrodinger's Equation ( time dependent )

$$\boxed{-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=i \hbar \frac{\partial \Psi}{\partial t}} $$


\(\Psi\) = Wavefunction

\(m\) = mass

3D Schrodinger's Equation ( time dependent )

$$\boxed{\Big(-\frac{\hbar^{2}}{2 m}\;\nabla^{2} + V\Big)\;\Psi=i \hbar \frac{\partial \Psi}{\partial t}} $$


$$Laplacian,\;\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$$

Time independent schrodinger's equation

$$\boxed{\frac{\partial^{2} \Psi}{\partial x^{2}} + \frac{2m}{\hbar^2}\;(E-V)\Psi = 0}$$


\(\Psi\) = Wavefunction

\(V\) = Potential

Energy of particle in 1 dimensional square well potential or box

$$\boxed{\;\; E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}\;\;}$$


\(E_n\) = Energy of nth level

\(h\) = Plank's constant = \( 6.63 \times 10^{23} J.s \)

\(m\) = Mass of the particle

\(L\) = Width of the box

Acoustics

Loudness

$$\boxed{L = log_{10}\;(I)}$$


\(L\) = Loudness of sound

\(I\) = Intensity of sound

Sound intensity level (SIL)

$$\boxed{SIL = log_{10}\Big(\frac{I}{I_o}\Big)}$$


\(I_o\) = Reference intensity or threshold of minimum ( \( 10^{-12}\;W/m^2 \) )

\(I\) = Intensity of sound

Absorption

$$A=\alpha_{floor}\;S_{floor} +\alpha_{ceiling}\;S_{ceiling}$$ $$+\alpha_{walls}\;S_{walls}+...$$


\(\alpha\) = Absorption coefficient

\(S\) = Surface area of each component

Average absorption coefficient

$$\alpha_{av}=\frac{\alpha_{1}\;S_{1} +\alpha_{2}\;S_{2} \alpha_{3}\;S_{3}+...}{S_1+S_2+S_3+...}$$ or $$ \alpha_{av}=\frac{A}{S}$$


\(A\) = Total bsorption

\(S\) = Total surface area

Sabine's formula

$$\boxed{T=\frac{0.163\;V}{A}}$$


\(T\) = Reverberation time

\(V\) = Volume of hall

\(A\) = Total absorption

Ultrasonics

Frequency of ferromagnetic rod

$$\boxed{f=\frac{n}{2l}\;\sqrt{\frac{T}{\mu}}}$$ when n = 1 Fundamental frequency; $$\boxed{f=\frac{1}{2l}\;\sqrt{\frac{Y}{\rho}}}$$


\(l\) = length of ferromagnetic rod

\(Y\) = Young's modulus

\(\rho\) = Density

Frequency of Piezoelectric crystal

$$\boxed{f=\frac{n}{2l}\;\sqrt{\frac{T}{\mu}}}$$ when n = 1 Fundamental frequency; $$\boxed{f=\frac{1}{2l}\;\sqrt{\frac{Y}{\rho}}}$$


\(l\) = Thickness of crystal

\(Y\) = Young's modulus

\(\rho\) = Density

Fibre Optics

Numerical Aperture ( NA )

$$\boxed{NA=sin\;\theta_a}$$


\(\theta_a\) = Acceptance angle

Numerical Aperture ( NA )

$$\boxed{NA=\sqrt{n_1^2-n_2^2}}$$ If fibre is inside a medium of refractive index, \( \mu\) ; $$\boxed{NA=\frac{\sqrt{n_1^2-n_2^2}}{\mu}}$$


\(n_1\) = Refractive index of core

\(n_2\) = Refractive index of cladding

Fractional/Relative refractive index change \( \Delta \)

$$\boxed{\Delta=\frac{n_1-n_2}{n_1}}$$ It can be related to numerical aperture NA as ; $$\boxed{NA=n_1\sqrt{2 \Delta}}$$


\(n_1\) = Refractive index of core

\(n_2\) = Refractive index of cladding