Oscillations
Differential equation of simple harmonic motion or SHM,
$$\boxed{\frac{d^2 x}{dt^2}+\omega^2 x = 0}$$
x : Displacement(m)
\(\omega\) : Angular frequency
Equation of motion of SHM
$$ \boxed{x(t)=A\;sin\;(\omega t + \phi) }$$
A : Amplitude
\(\phi\) : Initial phase
Differential equation of Damped harmonic oscillator
$$\boxed{\frac{d^2 x}{dt^2}+2 \gamma \frac{dx}{dt}+\omega_o^2 x = 0}$$
\(\gamma\) : Damping coefficient
\(\omega_o\) : Natural frequency
x : Displacement
t : time
Damping coefficient
$$\boxed{\gamma = \frac{b}{2m}}$$
b : Damping constant
m : mass
Angular frequency of damped oscillator
$$\boxed{\omega=\sqrt{\omega_o^2 - \gamma^2}}$$
\( \gamma \) : Damping coefficient
\( \omega_o \) : natural angular frequency of oscillator
Quality factor
$$\boxed{Q=\frac{\omega}{2 \gamma }}$$
\( \gamma \) : Damping coefficient
\( \omega \) : Angular frequency of damped oscillator
Relaxation time
$$\boxed{\tau=\frac{1}{2 \gamma }}$$
\( \gamma \) : Damping coefficient
Energy dissipation in damped oscillator
$$\boxed{E(t)=E_o\;e^{-2 \gamma t}}$$
\( \gamma \) : Damping coefficient
\( E(t) \) : Energy at time t
\( E_o \) : Initial energy or undamped value
Amplitude variation in damped oscillator
$$\boxed{A(t)=A_o\;e^{- \gamma t}}$$
\( \gamma \) : Damping coefficient
\( A(t) \) : Amplitude at time t
\( A_o \) : Initial Amplitude of oscillator
Differential equation of forced harmonic oscillator
$$\boxed{\frac{d^2 x}{dt^2}+2 \gamma \frac{dx}{dt}+\omega_o^2 x = f_o\;sin\;(\omega_f \;t)}$$
\(\gamma\) : Damping coefficient
\(f_o\) : Amplitude of external periodic force
\(\omega_f \) : Angular frequency of external periodic force or external driving frequency
Amplitude of forced harmonic oscillator
$$\boxed{A= \frac{f_o}{\sqrt{(\omega_o^2 - \omega_f^2)^2 + 4 \gamma^2 \omega_f^2}}}$$
\(\gamma\) : Damping coefficient
\(f_o\) : Amplitude of external periodic force
\(\omega_f \) : Angular frequency of external periodic force or external driving frequency
Differential equation of LCR circuit or electrical oscillator
$$\boxed{\frac{d^2 q}{dt^2}+\frac{R}{L}\frac{dq}{dt}+\frac{q}{LC}=\frac{V_o}{L}\;sin\;(\omega t)\;}$$
q : Charge
R : Resistance
L : Inductance
C : Capacitance
\(V_o\) : Voltage Amplitude
\( \omega \) : Angular frequency of power source
Waves
1-D Wave equation
$$\boxed{\frac{\partial^2 u}{\partial x^2} =\frac{1}{v^2} \; \frac{\partial^u}{\partial t^2}}$$
\(u\) : Displacement of particles in medium
\(v\) : velocity of wave
3-D Wave equation
$$\boxed{\nabla^2 u =\frac{1}{v^2} \; \frac{\partial^u}{\partial t^2}}$$
\(\nabla^2\) : Laplacian operator
\(v\) : velocity of wave
Solution of 1-D Wave equation
$$\boxed{u(x,t)=A\;sin\;(kx \pm \omega t + \phi)}$$
\(u\) : Displacement of particles in medium
\(A\) : Amplitude of wave
\(\omega\) : Angular frequency of wave
\( k \) : Wave number or wave vector
\(x \) : Displacement of wave
\(\phi \) : Initial phase
Frequency & Angular frequency
$$\boxed{f=\frac{\omega}{2 \pi}}$$
\(f\) : frequency
\(\omega\) : Angular frequency
Wavelength and Wavenumber
$$\boxed{\lambda=\frac{2 \pi}{k}}$$
\(k\) : Wave number
\(\lambda\) : Wavelength
Velocity of Wave
$$\boxed{v=f\;\lambda\;\;or\;\;v=\frac{\omega}{k}}$$
\(k\) : Wave number
\(\lambda\) : Wavelength
\(f\) : frequency
\(\omega\) : Angular frequency
Velocity of waves in stretched string
$$\boxed{v =\sqrt{ \frac{T}{\mu}}}$$
\(T\) : Tension on string
\(\mu\) : Linear mass density of string
Frequency of waves in stretched string
$$\boxed{f =\frac{n}{2l}\sqrt{ \frac{T}{\mu}}}$$ when n = 1 , fundamental frequency:
$$\boxed{f_{fund} =\frac{1}{2l}\sqrt{ \frac{T}{\mu}}}$$
\(T\) : Tension on string
\(\mu\) : Linear mass density of string
\(l\) : length of string
\(n\) : number of loops formed in string
Interference
Condition for maximum ( Constructive interference )
$$\boxed{path\;difference =n\;\lambda}$$
\(n\) = 1,2,3....
\(\lambda\) : Wavelength
Condition for minimum ( Destructive interference )
$$\boxed{path\;difference =(2n-1)\frac{\lambda}{2}}$$
\(n\) = 1,2,3....
\(\lambda\) : Wavelength
Cosine law ( Reflection on thin film )
$$\boxed{2 \mu t \;cos\;r =n\;\lambda}$$
\(\mu\) = Refractive index of thin film
\(\lambda\) : Wavelength
\(t\) = Thickness of thin film
\(r\) : Angle of refraction
Bandwidth ( of Air wedge interference pattern )
$$\boxed{\beta =\frac{\lambda}{2 \theta }}$$ if a medium of refractive index \( \mu \) is filled between glass plates, $$\boxed{\beta =\frac{\lambda}{2 \mu \theta}} $$
\(\theta\) = Angle of wedge
\(\lambda\) : Wavelength
Diameter of thin wire ( Air wedge )
$$\boxed{d =\frac{l\;\lambda}{2 \beta }}$$
\(\beta\) = Bandwidth of interference pattern
\(l\) : distance between point of contact and wire
\(\lambda\) = Wavelength of incident light
Radius of nth dark ring ( Newton's Rings )
$$\boxed{r_n =\sqrt{Rn\lambda}}$$
\(R\) = Radius of curvature of lens
\(n\) : order of the ring
\(\lambda\) = Wavelength of incident light
Wavelength of light ( Newton's Rings )
$$\boxed{\lambda =\frac{D_{n+k}^2 - D_n^2}{4kR}}$$ if a liquid of refractive index \( \mu \) is inserted between lens and glass plate, $$\boxed{\lambda =\frac{D_{n+k}^2 - D_n^2}{4 \mu kR}}$$ or refractive index, $$\boxed{\mu =\frac{D_{n+k}^2 - D_n^2}{4kR \lambda}}$$
\(D_{n+k}\) = Diameter of (n+k)th dark ring
\(D_{n}\) = Diameter of nth dark ring
\(R\) = Radius of curvature of lens
\(k\) = Difference in order of ring
Refractive index of liquid inserted between lens and plate ( Newton's Rings )
$$\boxed{\mu =\frac{D_{n+k}^2 - D_n^2}{d_{n+k}^2 - d_n^2}}$$
\(D_{n+k}\) = Diameter of (n+k)th dark ring when air is between lens and glass plate
\(D_{n}\) = Diameter of nth dark ring when air is between lens and glass plate
\(d_{n+k}\) = Diameter of (n+k)th dark ring when liquid of refractive index \( \mu \) is between lens and glass plate
\(d_{n}\) = Diameter of nth dark ring when liquid of refractive index \( \mu \) is between lens and glass plate
Minimum thickness ( Anti-Reflection coatings )
$$\boxed{t =\frac{\lambda}{4 \mu}}$$
\(\mu\) = Refractive index of thin film
\(\lambda\) = Wavelength of incident light
Diffraction
Grating equation
$$\boxed{sin\;\theta = n N \lambda}$$
\(\theta\) = Angle of diffraction
\(n\) = Order of spectrum
\(\lambda\) = Wavelength of incident light
\(N\) = Number of lines per unit length in grating
Resolving power of grating
$$\boxed{\frac{\lambda}{d \lambda}= n N'}$$
\(\lambda\) = Wavelength of incident light
\(N'\) = Total number of lines in grating
\(n\) = Order of spectrum
Dispersive power of grating
$$\boxed{\frac{d\theta}{d \lambda}= \frac{n N}{cos\;\theta}}$$
\(\lambda\) = Wavelength of incident light
\(N\) = Number of lines per unit length of grating
\(n\) = Order of spectrum
\(\theta\) = Angle of diffraction
Quantum Mechanics
De-broglie wavelength
$$\boxed{\lambda = \frac{h}{p} = \frac{h}{mv}}$$ In terms of energy E of a particle, $$ \boxed{\lambda = \frac{h}{\sqrt{2mE}}} $$
\(h\) = Plank's constant = \( 6.63 \times 10^{23} J.s \)
\(p\) = Momentum of particle
\(m\) = Mass of particle
\(v\) = Velocity of particle
Position - Momentum Uncertainty principle.
$$\boxed{\Delta x \;\Delta P = \hbar}$$ In terms of velocity v of a particle, $$ \boxed{\Delta x \;m\;\Delta v = \hbar} $$
\(\Delta x\) = Uncertainty in position
\(\Delta p\) = Uncertainty in momentum
\(\hbar\) = Reduced Plank's constant = \( \frac{h}{2 \pi} \)
\(\Delta v\) = Uncertainty in velocity
Position - Momentum Uncertainty principle.
$$\boxed{\Delta E \;\Delta t = \hbar}$$
\(\Delta E\) = Uncertainty in energy measurement
\(\Delta t\) = Life time of energy state E
\(\hbar\) = Reduced Plank's constant = \( \frac{h}{2 \pi} \)
1D Schrodinger's Equation ( time dependent )
$$\boxed{-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}=i \hbar \frac{\partial \Psi}{\partial t}} $$
\(\Psi\) = Wavefunction
\(m\) = mass
3D Schrodinger's Equation ( time dependent )
$$\boxed{\Big(-\frac{\hbar^{2}}{2 m}\;\nabla^{2} + V\Big)\;\Psi=i \hbar \frac{\partial \Psi}{\partial t}} $$
$$Laplacian,\;\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$$
Time independent schrodinger's equation
$$\boxed{\frac{\partial^{2} \Psi}{\partial x^{2}} + \frac{2m}{\hbar^2}\;(E-V)\Psi = 0}$$
\(\Psi\) = Wavefunction
\(V\) = Potential
Energy of particle in 1 dimensional square well potential or box
$$\boxed{\;\; E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}\;\;}$$
\(E_n\) = Energy of nth level
\(h\) = Plank's constant = \( 6.63 \times 10^{23} J.s \)
\(m\) = Mass of the particle
\(L\) = Width of the box
Acoustics
Loudness
$$\boxed{L = log_{10}\;(I)}$$
\(L\) = Loudness of sound
\(I\) = Intensity of sound
Sound intensity level (SIL)
$$\boxed{SIL = log_{10}\Big(\frac{I}{I_o}\Big)}$$
\(I_o\) = Reference intensity or threshold of minimum ( \( 10^{-12}\;W/m^2 \) )
\(I\) = Intensity of sound
Absorption
$$A=\alpha_{floor}\;S_{floor} +\alpha_{ceiling}\;S_{ceiling}$$ $$+\alpha_{walls}\;S_{walls}+...$$
\(\alpha\) = Absorption coefficient
\(S\) = Surface area of each component
Average absorption coefficient
$$\alpha_{av}=\frac{\alpha_{1}\;S_{1} +\alpha_{2}\;S_{2} \alpha_{3}\;S_{3}+...}{S_1+S_2+S_3+...}$$ or $$ \alpha_{av}=\frac{A}{S}$$
\(A\) = Total bsorption
\(S\) = Total surface area
Sabine's formula
$$\boxed{T=\frac{0.163\;V}{A}}$$
\(T\) = Reverberation time
\(V\) = Volume of hall
\(A\) = Total absorption
Ultrasonics
Frequency of ferromagnetic rod
$$\boxed{f=\frac{n}{2l}\;\sqrt{\frac{T}{\mu}}}$$ when n = 1 Fundamental frequency; $$\boxed{f=\frac{1}{2l}\;\sqrt{\frac{Y}{\rho}}}$$
\(l\) = length of ferromagnetic rod
\(Y\) = Young's modulus
\(\rho\) = Density
Frequency of Piezoelectric crystal
$$\boxed{f=\frac{n}{2l}\;\sqrt{\frac{T}{\mu}}}$$ when n = 1 Fundamental frequency; $$\boxed{f=\frac{1}{2l}\;\sqrt{\frac{Y}{\rho}}}$$
\(l\) = Thickness of crystal
\(Y\) = Young's modulus
\(\rho\) = Density
Fibre Optics
Numerical Aperture ( NA )
$$\boxed{NA=sin\;\theta_a}$$
\(\theta_a\) = Acceptance angle
Numerical Aperture ( NA )
$$\boxed{NA=\sqrt{n_1^2-n_2^2}}$$ If fibre is inside a medium of refractive index, \( \mu\) ; $$\boxed{NA=\frac{\sqrt{n_1^2-n_2^2}}{\mu}}$$
\(n_1\) = Refractive index of core
\(n_2\) = Refractive index of cladding
Fractional/Relative refractive index change \( \Delta \)
$$\boxed{\Delta=\frac{n_1-n_2}{n_1}}$$ It can be related to numerical aperture NA as ; $$\boxed{NA=n_1\sqrt{2 \Delta}}$$
\(n_1\) = Refractive index of core
\(n_2\) = Refractive index of cladding